Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.
Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
Accardi, A.;Achenbach, P.;Adhikari, D.;Afanasev, A.;Akondi, C. S.;Akopov, N.;Albaladejo, M.;Albataineh, H.;Albrecht, M.;Almeida-Zamora, B.;Amaryan, M.;Androić, D.;Armstrong, W.;Armstrong, D. S.;Arratia, M.;Arrington, J.;Asaturyan, A.;Austregesilo, A.;Avakian, H.;Averett, T.;Gayoso, C. Ayerbe;Bacchetta, A.;Balantekin, A. B.;Baltzell, N.;Barion, L.;Barry, P. C.;Bashir, A.;Battaglieri, M.;Bellini, V.;Belov, I.;Benhar, O.;Benkel, B.;Benmokhtar, F.;Bentz, W.;Bertone, V.;Bhatt, H.;Bianconi, A.;Bibrzycki, L.;Bijker, R.;Binosi, D.;Biswas, D.;Boër, M.;Boeglin, W.;Bogacz, S. A.;Boglione, M.;Bondí, M.;Boos, E. E.;Bosted, P.;Bozzi, G.;Brash, E. J.;Briceño, R. A.;Brindza, P. D.;Briscoe, W. J.;Brodsky, S. J.;Brooks, W. K.;Burkert, V. D.;Camsonne, A.;Cao, T.;Cardman, L. S.;Carman, D. S.;Carpinelli, M.;Cates, G. D.;Caylor, J.;Celentano, A.;Celiberto, F. G.;Cerutti, M.;Chang, L.;Chatagnon, P.;Chen, C.;Chen, J. -P.;Chetry, T.;Christopher, A.;Christy, E.;Chudakov, E.;Cisbani, E.;Cloët, I. C.;Cobos-Martinez, J. J.;Cohen, E. O.;Colangelo, P.;Cole, P. L.;Constantinou, M.;Contalbrigo, M.;Costantini, G.;Cosyn, W.;Cotton, C.;Courtoy, A.;Dusa, S. Covrig;Crede, V.;Cui, Z. -F.;D'Angelo, A.;Döring, M.;Dalton, M. M.;Danilkin, I.;Davydov, M.;Day, D.;De Fazio, F.;De Napoli, M.;De Vita, R.;Dean, D. J.;Defurne, M.;de Paula, W.;de Téramond, G. F.;Deur, A.;Devkota, B.;Dhital, S.;Di Nezza, P.;Diefenthaler, M.;Diehl, S.;Dilks, C.;Ding, M.;Djalali, C.;Dobbs, S.;Dupré, R.;Dutta, D.;Edwards, R. G.;Egiyan, H.;Ehinger, L.;Eichmann, G.;Elaasar, M.;Elouadrhiri, L.;Alaoui, A. El;Fassi, L. El;Emmert, A.;Engelhardt, M.;Ent, R.;Ernst, D. J.;Eugenio, P.;Evans, G.;Fanelli, C.;Fegan, S.;Fernández-Ramírez, C.;Fernandez, L. A.;Fernando, I. P.;Filippi, A.;Fischer, C. S.;Fogler, C.;Fomin, N.;Frankfurt, L.;Frederico, T.;Freese, A.;Fu, Y.;Gamberg, L.;Gan, L.;Gao, F.;Garcia-Tecocoatzi, H.;Gaskell, D.;Gasparian, A.;Gates, K.;Gavalian, G.;Ghoshal, P. K.;Giachino, A.;Giacosa, F.;Giannuzzi, F.;Gilfoyle, G. -P.;Girod, F. -X.;Glazier, D. I.;Gleason, C.;Godfrey, S.;Goity, J. L.;Golubenko, A. A.;Gonzàlez-Solís, S.;Gothe, R. W.;Gotra, Y.;Griffioen, K.;Grocholski, O.;Grube, B.;Guèye, P.;Guo, F. -K.;Guo, Y.;Guo, L.;Hague, T. J.;Hammoud, N.;Hansen, J. -O.;Hattawy, M.;Hauenstein, F.;Hayward, T.;Heddle, D.;Heinrich, N.;Hen, O.;Higinbotham, D. W.;Higuera-Angulo, I. M.;Hiller Blin, A. N.;Hobart, A.;Hobbs, T.;Holmberg, D. E.;Horn, T.;Hoyer, P.;Huber, G. M.;Hurck, P.;Hutauruk, P. T. P.;Ilieva, Y.;Illari, I.;Ireland, D. G.;Isupov, E. L.;Italiano, A.;Jaegle, I.;Jarvis, N. S.;Jenkins, D. J.;Jeschonnek, S.;Ji, C. -R.;Jo, H. S.;Jones, M.;Jones, R. T.;Jones, D. C.;Joo, K.;Junaid, M.;Kageya, T.;Kalantarians, N.;Karki, A.;Karyan, G.;Katramatou, A. T.;Kay, S. J. D.;Kazimi, R.;Keith, C. D.;Keppel, C.;Kerbizi, A.;Khachatryan, V.;Khanal, A.;Khandaker, M.;Kim, A.;Kinney, E. R.;Kohl, M.;Kotzinian, A.;Kriesten, B. T.;Kubarovsky, V.;Kubis, B.;Kuhn, S. E.;Kumar, V.;Kutz, T.;Leali, M.;Lebed, R. F.;Lenisa, P.;Leskovec, L.;Li, S.;Li, X.;Liao, J.;Lin, H. -W.;Liu, L.;Liuti, S.;Liyanage, N.;Lu, Y.;MacGregor, I. J. D.;Mack, D. J.;Maiani, L.;Mamo, K. A.;Mandaglio, G.;Mariani, C.;Markowitz, P.;Marukyan, H.;Mascagna, V.;Mathieu, V.;Maxwell, J.;Mazouz, M.;McCaughan, M.;McKeown, R. D.;McKinnon, B.;Meekins, D.;Melnitchouk, W.;Metz, A.;Meyer, C. A.;Meziani, Z. -E.;Mezrag, C.;Michaels, R.;Miller, G. A.;Mineeva, T.;Miramontes, A. S.;Mirazita, M.;Mizutani, K.;Mkrtchyan, A.;Mkrtchyan, H.;Moffit, B.;Mohanmurthy, P.;Mokeev, V. I.;Monaghan, P.;Montaña, G.;Montgomery, R.;Moretti, A.;Chàvez, J. M. Morgado;Mosel, U.;Movsisyan, A.;Musico, P.;Nadeeshani, S. A.;Nadolsky, P. M.;Nakamura, S. X.;Nazeer, J.;Nefediev, A. V.;Neupane, K.;Nguyen, D.;Niccolai, S.;Niculescu, I.;Niculescu, G.;Nocera, E. R.;Nycz, M.;Olness, F. I.;Ortega, P. G.;Osipenko, M.;Pace, E.;Pandey, B.;Pandey, P.;Papandreou, Z.;Papavassiliou, J.;Pappalardo, L. L.;Paredes-Torres, G.;Paremuzyan, R.;Park, S.;Parsamyan, B.;Paschke, K. D.;Pasquini, B.;Passemar, E.;Pasyuk, E.;Patel, T.;Paudel, C.;Paul, S. J.;Peng, J. -C.;Pentchev, L.;Perrino, R.;Perry, R. J.;Peters, K.;Petratos, G. G.;Phelps, W.;Piasetzky, E.;Pilloni, A.;Pire, B.;Pitonyak, D.;Pitt, M. L.;Polosa, A. D.;Pospelov, M.;Postuma, A. C.;Poudel, J.;Preet, L.;Prelovsek, S.;Price, J. W.;Prokudin, A.;Puckett, A. J. R.;Pybus, J. R.;Qin, S. -X.;Qiu, J. -W.;Radici, M.;Rashidi, H.;Rathnayake, A. D.;Raue, B. A.;Reed, T.;Reimer, P. E.;Reinhold, J.;Richard, J. -M.;Rinaldi, M.;Ringer, F.;Ripani, M.;Ritman, J.;West, J. Rittenhouse;Rivero-Acosta, A.;Roberts, C. D.;Rodas, A.;Rodini, S.;Rodríguez-Quintero, J.;Rogers, T. C.;Rojo, J.;Rossi, P.;Rossi, G. C.;Salmè, G.;Santiesteban, S. N.;Santopinto, E.;Sargsian, M.;Sato, N.;Schadmand, S.;Schmidt, A.;Schmidt, S. M.;Schnell, G.;Schumacher, R. A.;Schweitzer, P.;Scimemi, I.;Scott, K. C.;Seay, D. A.;Segovia, J.;Semenov-Tian-Shansky, K.;Seryi, A.;Sharda, A. S.;Shepherd, M. R.;Shirokov, E. V.;Shrestha, S.;Shrestha, U.;Shvedunov, V. I.;Signori, A.;Slifer, K. J.;Smith, W. A.;Somov, A.;Souder, P.;Sparveris, N.;Spizzo, F.;Spreafico, M.;Stepanyan, S.;Stevens, J. R.;Strakovsky, I. I.;Strauch, S.;Strikman, M.;Su, S.;Sumner, B. C. L.;Sun, E.;Suresh, M.;Sutera, C.;Swanson, E. S.;Szczepaniak, A. P.;Sznajder, P.;Szumila-Vance, H.;Szymanowski, L.;Tadepalli, A. -S.;Tadevosyan, V.;Tamang, B.;Tarasov, V. V.;Thiel, A.;Tong, X. -B.;Tyson, R.;Ungaro, M.;Urciuoli, G. M.;Usman, A.;Valcarce, A.;Vallarino, S.;Vaquera-Araujo, C. A.;Venturelli, L.;Vera, F.;Vladimirov, A.;Vossen, A.;Wagner, J.;Wei, X.;Weinstein, L. B.;Weiss, C.;Williams, R.;Winney, D.;Wojtsekhowski, B.;Wood, M. H.;Xiao, T.;Xu, S. -S.;Ye, Z.;Yero, C.;Yuan, C. -P.;Yurov, M.;Zachariou, N.;Zhang, Z.;Zhao, Y.;Zhao, Z. W.;Zheng, X.;Zhou, X.;Ziegler, V.;Zihlmann, B.
2024-01-01
Abstract
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1510784
Citazioni
ND
ND
2
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.