A variational scheme of evolution (minimizing movements) is applied to a sequence of discrete functionals converging, as the mesh size tends to zero, to the prototypical second-order functional with free-discontinuities. At fixed mesh size, a discrete evolution can be defined, depending on a (small) time parameter. We study the limit problem when both the mesh size and the time step tend to zero. The method provides a function which matches the expected evolution of the free-discontinuity limit functional. From a mechanical point of view, the model can be interpreted as the evolution from a non-equilibrium state, of a rod with possible crease discontinuities and fracture.

Variational evolution of discrete one-dimensional second-order functionals

Enrico Vitali
2024-01-01

Abstract

A variational scheme of evolution (minimizing movements) is applied to a sequence of discrete functionals converging, as the mesh size tends to zero, to the prototypical second-order functional with free-discontinuities. At fixed mesh size, a discrete evolution can be defined, depending on a (small) time parameter. We study the limit problem when both the mesh size and the time step tend to zero. The method provides a function which matches the expected evolution of the free-discontinuity limit functional. From a mechanical point of view, the model can be interpreted as the evolution from a non-equilibrium state, of a rod with possible crease discontinuities and fracture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1511063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact