Introduction: We report the use of a new ultrasound technique to evaluate the axial and lateral components of a complex flow in the arteriovenous fistula (AVF). Vector Flow Imaging (VFI) allows to identify different components of the flow in every direction, even orthogonal to the flow streamline, represented by many single vectors. VFI could help to identify flow alterations in AVF, probably responsible for its malfunction. Methods: From February to June 2016, 14 consecutive patients with upper-limb AVF were examined with a Resona 7 (Mindray, Shenzhen, China) ultrasound scanner equipped with VFI. An analysis of mean velocity, angular direction and mean number of vectors impacting the vessel wall was carried out. We also identified main flow patterns present in the arterial side, into the venous aneurysm and in correspondence of significant stenosis. Results: A disturbed flow with the presence of vectors directed against the vessel walls was found in 9/14 patients (64.28%): in correspondence of the iuxta-anastomotic venous side (4/9; 44.4%), into the venous aneurysmal tracts (3/9; 33.3%) and in concomitance of stenosis (2/9; 22.2%). The mean velocity of the vectors was around 20-25 cm/s, except in presence of stenosis, where the velocities were much higher (45-50 cm/s). The vectors directed against the vessel walls presented high angle attack (from 45° to 90°, with a median angular deviation 65°). Conclusions: VFI was confirmed to be an innovative and intuitive imaging technology to study the flow complexity in the arteriovenous fistulas.
Ultrasound Vector Flow Imaging - could be a new tool in evaluation of arteriovenous fistulas for hemodialysis?
Fiorina, Ilaria;Raciti, Maria Vittoria;Bortolotto, Chandra;Calliada, Fabrizio
2017-01-01
Abstract
Introduction: We report the use of a new ultrasound technique to evaluate the axial and lateral components of a complex flow in the arteriovenous fistula (AVF). Vector Flow Imaging (VFI) allows to identify different components of the flow in every direction, even orthogonal to the flow streamline, represented by many single vectors. VFI could help to identify flow alterations in AVF, probably responsible for its malfunction. Methods: From February to June 2016, 14 consecutive patients with upper-limb AVF were examined with a Resona 7 (Mindray, Shenzhen, China) ultrasound scanner equipped with VFI. An analysis of mean velocity, angular direction and mean number of vectors impacting the vessel wall was carried out. We also identified main flow patterns present in the arterial side, into the venous aneurysm and in correspondence of significant stenosis. Results: A disturbed flow with the presence of vectors directed against the vessel walls was found in 9/14 patients (64.28%): in correspondence of the iuxta-anastomotic venous side (4/9; 44.4%), into the venous aneurysmal tracts (3/9; 33.3%) and in concomitance of stenosis (2/9; 22.2%). The mean velocity of the vectors was around 20-25 cm/s, except in presence of stenosis, where the velocities were much higher (45-50 cm/s). The vectors directed against the vessel walls presented high angle attack (from 45° to 90°, with a median angular deviation 65°). Conclusions: VFI was confirmed to be an innovative and intuitive imaging technology to study the flow complexity in the arteriovenous fistulas.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.