Rotor bar breakage in induction motors is often detected by analysing the signatures in the stator current. However, due to the alteration of the current spectrum, traditional methods may fail when inverter-fed motors operate with closed-loop control using a cascade structure to regulate the speed. In this paper, the potential of zero-sequence voltage analysis to detect this fault is investigated, and a new index to quantify the severity of the fault based on this signal is proposed. Signals from motors operating under different control strategies and signals from motors powered from the mains are considered to verify the robustness of the proposed fault severity index. As a result, in all the analysed conditions the value of the proposed index for the healthy motor is found to be approximately 0.010, while for the faulty machine it is between 0.110 and 0.252.
Detection of Broken Bars in Induction Motors Operating with Closed-Loop Speed Control
Francesca Muzio;Lorenzo Mantione;LUCIA FROSINI;
2024-01-01
Abstract
Rotor bar breakage in induction motors is often detected by analysing the signatures in the stator current. However, due to the alteration of the current spectrum, traditional methods may fail when inverter-fed motors operate with closed-loop control using a cascade structure to regulate the speed. In this paper, the potential of zero-sequence voltage analysis to detect this fault is investigated, and a new index to quantify the severity of the fault based on this signal is proposed. Signals from motors operating under different control strategies and signals from motors powered from the mains are considered to verify the robustness of the proposed fault severity index. As a result, in all the analysed conditions the value of the proposed index for the healthy motor is found to be approximately 0.010, while for the faulty machine it is between 0.110 and 0.252.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.