Interface engineering is the core of device optimization, and this is particularly true for perovskite photovoltaics (PVs). The steady improvement in their performance has been largely driven by careful manipulation of interface chemistry to reduce unwanted recombination. Despite that, PVs devices still suffer from unavoidable open circuit voltage (VOC) losses. Here, we propose a different approach by creating a photo-ferroelectric perovskite interface. By engineering an ultrathin ferroelectric two-dimensional perovskite (2D) which sandwiches a perovskite bulk, we exploit the electric field generated by external polarization in the 2D layer to enhance charge separation and minimize interfacial recombination. As a result, we observe a net gain in the device VOC reaching 1.21 V, the highest value reported to date for highly efficient perovskite PVs, leading to a champion efficiency of 24%. Modeling depicts a coherent matching of the crystal and electronic structure at the interface, robust to defect states and molecular reorientation. The interface physics is finely tuned by the photoferroelectric field, representing a new tool for advanced perovskite device design.

Photo-ferroelectric perovskite interfaces for boosting VOC in efficient perovskite solar cells

Pica, Giovanni;Pancini, Lorenzo;Toniolo, Francesco;Grancini, Giulia
2024-01-01

Abstract

Interface engineering is the core of device optimization, and this is particularly true for perovskite photovoltaics (PVs). The steady improvement in their performance has been largely driven by careful manipulation of interface chemistry to reduce unwanted recombination. Despite that, PVs devices still suffer from unavoidable open circuit voltage (VOC) losses. Here, we propose a different approach by creating a photo-ferroelectric perovskite interface. By engineering an ultrathin ferroelectric two-dimensional perovskite (2D) which sandwiches a perovskite bulk, we exploit the electric field generated by external polarization in the 2D layer to enhance charge separation and minimize interfacial recombination. As a result, we observe a net gain in the device VOC reaching 1.21 V, the highest value reported to date for highly efficient perovskite PVs, leading to a champion efficiency of 24%. Modeling depicts a coherent matching of the crystal and electronic structure at the interface, robust to defect states and molecular reorientation. The interface physics is finely tuned by the photoferroelectric field, representing a new tool for advanced perovskite device design.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1511883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact