Reading is both a visual and a linguistic task, and as such it relies on both general-purpose, visual mechanisms and more abstract, meaning-oriented processes. Disentangling the roles of these resources is of paramount importance in reading research. The present study capitalizes on the coupling of Fast Periodic Visual Stimulation (FPVS; Rossion, 2014) and MEG recordings to address this issue and investigate the role of dierent kinds of visual and linguistic units in the visual word identification system. We compared strings of pseudo-characters (BACS; C. Vidal & Chetail, 2017); strings of consonants (e.g,. sfcl); readable, but unattested strings (e.g., amsi); frequent, but non-meaningful chunks (e.g., idge); suffixes (e.g., ment); and words (e.g., vibe); and looked for discrimination responses with a particular focus on the ventral, occipito-temporal regions. The results revealed sensitivity to alphabetic, readable, familiar and lexical stimuli. Interestingly, there was no discrimination between suffixes and equally frequent, but meaningless endings, thus highlighting a lack of sensitivity to semantics. Taken together, the data suggest that the visual word identification system, at least in its early processing stages, is particularly tuned to form-based regularities, most likely reflecting its reliance on general-purpose, statistical learning mechanisms that are a core feature of the visual system as implemented in the ventral stream.
Selective Neural Entrainment Reveals Hierarchical Tuning to Linguistic Regularities in Reading
Crepaldi, Davide
In corso di stampa
Abstract
Reading is both a visual and a linguistic task, and as such it relies on both general-purpose, visual mechanisms and more abstract, meaning-oriented processes. Disentangling the roles of these resources is of paramount importance in reading research. The present study capitalizes on the coupling of Fast Periodic Visual Stimulation (FPVS; Rossion, 2014) and MEG recordings to address this issue and investigate the role of dierent kinds of visual and linguistic units in the visual word identification system. We compared strings of pseudo-characters (BACS; C. Vidal & Chetail, 2017); strings of consonants (e.g,. sfcl); readable, but unattested strings (e.g., amsi); frequent, but non-meaningful chunks (e.g., idge); suffixes (e.g., ment); and words (e.g., vibe); and looked for discrimination responses with a particular focus on the ventral, occipito-temporal regions. The results revealed sensitivity to alphabetic, readable, familiar and lexical stimuli. Interestingly, there was no discrimination between suffixes and equally frequent, but meaningless endings, thus highlighting a lack of sensitivity to semantics. Taken together, the data suggest that the visual word identification system, at least in its early processing stages, is particularly tuned to form-based regularities, most likely reflecting its reliance on general-purpose, statistical learning mechanisms that are a core feature of the visual system as implemented in the ventral stream.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.