The enhancement of low-quality images is both a challenging task and an essential endeavor in many fields including computer vision, computational photography, and image processing. In this paper, we propose a novel and fully explainable method for image enhancement that combines spatial selection and histogram equalization. Our approach leverages tree-search theory and deep reinforcement learning to iteratively select areas to be processed. Extensive experimentation on two datasets demonstrates the quality of our method compared to other state-of-the-art models. We also conducted a multi-user experiment which shows that our method can emulate a variety of enhancement styles. These results highlight the effectiveness and versatility of the proposed method in producing high-quality images through an explainable enhancement process.
Select & Enhance: Masked-based image enhancement through tree-search theory and deep reinforcement learning
Cotogni M.;Cusano C.
2024-01-01
Abstract
The enhancement of low-quality images is both a challenging task and an essential endeavor in many fields including computer vision, computational photography, and image processing. In this paper, we propose a novel and fully explainable method for image enhancement that combines spatial selection and histogram equalization. Our approach leverages tree-search theory and deep reinforcement learning to iteratively select areas to be processed. Extensive experimentation on two datasets demonstrates the quality of our method compared to other state-of-the-art models. We also conducted a multi-user experiment which shows that our method can emulate a variety of enhancement styles. These results highlight the effectiveness and versatility of the proposed method in producing high-quality images through an explainable enhancement process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.