Third-order parametric downconversion (TOPDC) describes a class of nonlinear interactions in which a pump photon is converted into a photon triplet. This process can occur spontaneously or it can be stimulated by seeding fields. Here we show that stimulated TOPDC (StTOPDC) can be exploited for the generation of quantum correlated photon pairs. We model StTOPDC in a microring resonator, predicting observable pair generation rates in a microring engineered for third-harmonic generation, and we examine the peculiar features of this approach when compared with second-order spontaneous parametric downconversion and spontaneous four-wave mixing. We conclude that if the experimental difficulties associated with implementing StTOPDC can be overcome, it may soon be possible to demonstrate this process in resonant integrated devices.

Generation of photon pairs by stimulated emission in ring resonators

Liscidini M.
Conceptualization
;
Sipe J. E.
Conceptualization
2022-01-01

Abstract

Third-order parametric downconversion (TOPDC) describes a class of nonlinear interactions in which a pump photon is converted into a photon triplet. This process can occur spontaneously or it can be stimulated by seeding fields. Here we show that stimulated TOPDC (StTOPDC) can be exploited for the generation of quantum correlated photon pairs. We model StTOPDC in a microring resonator, predicting observable pair generation rates in a microring engineered for third-harmonic generation, and we examine the peculiar features of this approach when compared with second-order spontaneous parametric downconversion and spontaneous four-wave mixing. We conclude that if the experimental difficulties associated with implementing StTOPDC can be overcome, it may soon be possible to demonstrate this process in resonant integrated devices.
2022
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
47
7
1802
1805
4
3
info:eu-repo/semantics/article
262
Banic, M.; Liscidini, M.; Sipe, J. E.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1516215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact