A fundamental and computationally challenging optimization task in wireless networks is to maximize the number of simultaneous transmissions, subject to signal-to-noise-and-interference ratio (SINR) requirements at the receivers. The conventional approach guaranteeing global optimality is to solve an integer programming model with explicit SINR constraints. These constraints are however numerically very difficult. We develop a new integer programming algorithm based on a much more effective representation of the SINR constraints. Computational experiments demonstrate that the new approach performs significantly better in proving optimality.
A New Computational Approach for Maximum Link Activation in Wireless Networks under the SINR Model
Gualandi, Stefano
;
2011-01-01
Abstract
A fundamental and computationally challenging optimization task in wireless networks is to maximize the number of simultaneous transmissions, subject to signal-to-noise-and-interference ratio (SINR) requirements at the receivers. The conventional approach guaranteeing global optimality is to solve an integer programming model with explicit SINR constraints. These constraints are however numerically very difficult. We develop a new integer programming algorithm based on a much more effective representation of the SINR constraints. Computational experiments demonstrate that the new approach performs significantly better in proving optimality.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.