(1) Background: we proposed an integrated strategy to support clinical allocation of nasopharyngeal patients between proton and photon radiotherapy. (2) Methods: intensity-modulated proton therapy (IMPT) plans were optimized for 50 consecutive nasopharyngeal carcinoma (NPC) patients treated with volumetric modulated arc therapy (VMAT), and differences in dose and normal tissue complication probability (∆NTCPx-p) for 16 models were calculated. Patient eligibility for IMPT was assessed using a model-based selection (MBS) strategy following the results for 7/16 models describing the most clinically relevant endpoints, applying a model-specific ∆NTCPx-p threshold (15% to 5% depending on the severity of the complication) and a composite threshold (35%). In addition, a comprehensive toxicity score (CTS) was defined as the weighted sum of all 16 ∆NTCPx-p, where weights follow a clinical rationale. (3) Results: Dose deviations were in favor of IMPT (∆Dmean ≥ 14% for cord, esophagus, brainstem, and glottic larynx). The risk of toxicity significantly decreased for xerostomia (−12.5%), brain necrosis (−2.3%), mucositis (−3.2%), tinnitus (−8.6%), hypothyroidism (−9.3%), and trismus (−5.4%). There were 40% of the patients that resulted as eligible for IMPT, with a greater advantage for T3–T4 staging. Significantly different CTS were observed in patients qualifying for IMPT. (4) Conclusions: The MBS strategy successfully drives the clinical identification of NPC patients, who are most likely to benefit from IMPT. CTS summarizes well the expected global gain.

Proton Radiation Therapy for Nasopharyngeal Cancer Patients: Dosimetric and NTCP Evaluation Supporting Clinical Decision

Orlandi E.
2022-01-01

Abstract

(1) Background: we proposed an integrated strategy to support clinical allocation of nasopharyngeal patients between proton and photon radiotherapy. (2) Methods: intensity-modulated proton therapy (IMPT) plans were optimized for 50 consecutive nasopharyngeal carcinoma (NPC) patients treated with volumetric modulated arc therapy (VMAT), and differences in dose and normal tissue complication probability (∆NTCPx-p) for 16 models were calculated. Patient eligibility for IMPT was assessed using a model-based selection (MBS) strategy following the results for 7/16 models describing the most clinically relevant endpoints, applying a model-specific ∆NTCPx-p threshold (15% to 5% depending on the severity of the complication) and a composite threshold (35%). In addition, a comprehensive toxicity score (CTS) was defined as the weighted sum of all 16 ∆NTCPx-p, where weights follow a clinical rationale. (3) Results: Dose deviations were in favor of IMPT (∆Dmean ≥ 14% for cord, esophagus, brainstem, and glottic larynx). The risk of toxicity significantly decreased for xerostomia (−12.5%), brain necrosis (−2.3%), mucositis (−3.2%), tinnitus (−8.6%), hypothyroidism (−9.3%), and trismus (−5.4%). There were 40% of the patients that resulted as eligible for IMPT, with a greater advantage for T3–T4 staging. Significantly different CTS were observed in patients qualifying for IMPT. (4) Conclusions: The MBS strategy successfully drives the clinical identification of NPC patients, who are most likely to benefit from IMPT. CTS summarizes well the expected global gain.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1517004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact