The use of adenosine triphosphate (ATP) has shown promising effects in alleviating ischemic damage across various tissues. However, the penetration of ATP into kidney tubular cells presents a challenge due to their unique anatomical and physiological properties. In this study, we introduce a novel bioinspired drug delivery system utilizing extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) and engineered to carry ATP. ATP-loaded liposomes (ATP-LPs) and ATP-loaded EVs (ATP-EVs) were prepared using microfluidic technology, followed by characterization of their morphology (DLS, NTA, SEM, TEM), ATP content, and release rate at 37 °C (pH 7.4). Additionally, the delivery efficacy of ATP-LPs and ATP-EVs was evaluated in vitro on renal cells (HK2 cells) under chemically induced ischemia. The results indicated successful ATP enrichment in EVs, with ATP-EVs showing no significant changes in morphology or size compared to naïve EVs. Notably, ATP-EVs demonstrated superior ATP retention compared to ATP-LPs, protecting the ATP from degradation in the extracellular environment. In an ATP-depleted HK2 cell model, only ATP-EVs effectively restored ATP levels, preserving cell viability and reducing apoptotic gene expression (BCL2-BAX). This study is the first to successfully demonstrate the direct delivery of ATP into renal tubular cells in vitro using EVs as carriers.
Engineered ATP-Loaded Extracellular Vesicles Derived from Mesenchymal Stromal Cells: A Novel Strategy to Counteract Cell ATP Depletion in an In Vitro Model
Pisani, Silvia;Gregorini, Marilena;Valsecchi, Chiara;Ceccarelli, Gabriele;Islami, Tefik;Margiotta, Elisabetta;Portalupi, Valentina;De Mauri, Andreana;Pattonieri, Eleonora Francesca;Iadarola, Paolo;Viglio, Simona;Conti, Bice;Rampino, Teresa
2025-01-01
Abstract
The use of adenosine triphosphate (ATP) has shown promising effects in alleviating ischemic damage across various tissues. However, the penetration of ATP into kidney tubular cells presents a challenge due to their unique anatomical and physiological properties. In this study, we introduce a novel bioinspired drug delivery system utilizing extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) and engineered to carry ATP. ATP-loaded liposomes (ATP-LPs) and ATP-loaded EVs (ATP-EVs) were prepared using microfluidic technology, followed by characterization of their morphology (DLS, NTA, SEM, TEM), ATP content, and release rate at 37 °C (pH 7.4). Additionally, the delivery efficacy of ATP-LPs and ATP-EVs was evaluated in vitro on renal cells (HK2 cells) under chemically induced ischemia. The results indicated successful ATP enrichment in EVs, with ATP-EVs showing no significant changes in morphology or size compared to naïve EVs. Notably, ATP-EVs demonstrated superior ATP retention compared to ATP-LPs, protecting the ATP from degradation in the extracellular environment. In an ATP-depleted HK2 cell model, only ATP-EVs effectively restored ATP levels, preserving cell viability and reducing apoptotic gene expression (BCL2-BAX). This study is the first to successfully demonstrate the direct delivery of ATP into renal tubular cells in vitro using EVs as carriers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


