Prior research has shown that for specific periods, vegetation indices from PlanetScope and Sentinel-2 (used as a reference) must be aligned to benefit from the experience of Sentinel-2 and utilize techniques such as data fusion. Even during the worst-case scenario, it is possible through histogram matching to calibrate PlanetScope indices to achieve the same values as Sentinel-2 (useful also for proxy). Based on these findings, the authors examined the effectiveness of linear regression in aligning individual bands prior to computing indices to determine if the bands are shifted differently. The research was conducted on five important bands: Red, Green, Blue, NIR, and RedEdge. These bands allow for the computation of well-known vegetation indices like NDVI and NDRE, and soil indices like Iron Oxide Ratio and Coloration Index. Previous research showed that linear regression is not sufficient by itself to align indices in the worst-case scenario. However, this paper demonstrates its efficiency in achieving accurate band alignment. This finding highlights the importance of considering specific scaling requirements for bands obtained from different satellite sensors, such as PlanetScope and Sentinel-2. Contemporary images acquired by the two sensors during May and July demonstrated different behaviors in their bands; however, linear regression can align the datasets even during the problematic month of May.

Comparison of PlanetScope and Sentinel-2 Spectral Channels and Their Alignment via Linear Regression for Enhanced Index Derivation

Baldin, Christian Massimiliano;Casella, Vittorio Marco
2025-01-01

Abstract

Prior research has shown that for specific periods, vegetation indices from PlanetScope and Sentinel-2 (used as a reference) must be aligned to benefit from the experience of Sentinel-2 and utilize techniques such as data fusion. Even during the worst-case scenario, it is possible through histogram matching to calibrate PlanetScope indices to achieve the same values as Sentinel-2 (useful also for proxy). Based on these findings, the authors examined the effectiveness of linear regression in aligning individual bands prior to computing indices to determine if the bands are shifted differently. The research was conducted on five important bands: Red, Green, Blue, NIR, and RedEdge. These bands allow for the computation of well-known vegetation indices like NDVI and NDRE, and soil indices like Iron Oxide Ratio and Coloration Index. Previous research showed that linear regression is not sufficient by itself to align indices in the worst-case scenario. However, this paper demonstrates its efficiency in achieving accurate band alignment. This finding highlights the importance of considering specific scaling requirements for bands obtained from different satellite sensors, such as PlanetScope and Sentinel-2. Contemporary images acquired by the two sensors during May and July demonstrated different behaviors in their bands; however, linear regression can align the datasets even during the problematic month of May.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1525695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact