Liquid-storage tanks are critical components in industrial plants, especially during seismic events. Tank failures can cause significant economic losses, operational disruptions, and environmental damage. Therefore, accurate design and performance evaluation are essential to minimize these risks. However, past earthquakes have highlighted the need for a better understanding of tanks’ seismic behavior. This requires selecting the appropriate seismic input and ground motion records to properly simulate tank responses. This study examines the seismic behavior of various tank types using different earthquake record sets, including both far-field and near-field events. The tanks were modelled with varying geometries, such as diameter–height ratios, wall thickness, liquid height, and radius. Time-history analyses were conducted to generate fragility curves and evaluate the seismic performance of the tanks based on specific limit states. The findings show that the choice between far- and near-field records significantly influences seismic response, particularly in terms of fragility curve variation. The fragility curves derived from this analysis can serve as valuable tools for risk assessments by governments and stakeholders, helping to improve the safety and resilience of industrial plants.
Impact of Far- and Near-Field Records on the Seismic Fragility of Steel Storage Tanks
Gabbianelli, Giammaria;Nascimbene, Roberto
2025-01-01
Abstract
Liquid-storage tanks are critical components in industrial plants, especially during seismic events. Tank failures can cause significant economic losses, operational disruptions, and environmental damage. Therefore, accurate design and performance evaluation are essential to minimize these risks. However, past earthquakes have highlighted the need for a better understanding of tanks’ seismic behavior. This requires selecting the appropriate seismic input and ground motion records to properly simulate tank responses. This study examines the seismic behavior of various tank types using different earthquake record sets, including both far-field and near-field events. The tanks were modelled with varying geometries, such as diameter–height ratios, wall thickness, liquid height, and radius. Time-history analyses were conducted to generate fragility curves and evaluate the seismic performance of the tanks based on specific limit states. The findings show that the choice between far- and near-field records significantly influences seismic response, particularly in terms of fragility curve variation. The fragility curves derived from this analysis can serve as valuable tools for risk assessments by governments and stakeholders, helping to improve the safety and resilience of industrial plants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.