In this paper, a class of reaction-diffusion equations for Multiple Sclerosis is presented. These models are derived by means of a diffusive limit starting from a proper kinetic description, taking account of the underlying microscopic interactions among cells. At the macroscopic level, we discuss the necessary conditions for Turing instability phenomena and the formation of two-dimensional patterns, whose shape and stability are investigated by means of a weakly nonlinear analysis. Some numerical simulations, confirming and extending theoretical results, are proposed for a specific scenario.
Derivation from kinetic theory and 2-D pattern analysis of chemotaxis models for Multiple Sclerosis
Martalo' G.;
2025-01-01
Abstract
In this paper, a class of reaction-diffusion equations for Multiple Sclerosis is presented. These models are derived by means of a diffusive limit starting from a proper kinetic description, taking account of the underlying microscopic interactions among cells. At the macroscopic level, we discuss the necessary conditions for Turing instability phenomena and the formation of two-dimensional patterns, whose shape and stability are investigated by means of a weakly nonlinear analysis. Some numerical simulations, confirming and extending theoretical results, are proposed for a specific scenario.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


