In this paper, a class of reaction-diffusion equations for Multiple Sclerosis is presented. These models are derived by means of a diffusive limit starting from a proper kinetic description, taking account of the underlying microscopic interactions among cells. At the macroscopic level, we discuss the necessary conditions for Turing instability phenomena and the formation of two-dimensional patterns, whose shape and stability are investigated by means of a weakly nonlinear analysis. Some numerical simulations, confirming and extending theoretical results, are proposed for a specific scenario.

Derivation from kinetic theory and 2-D pattern analysis of chemotaxis models for Multiple Sclerosis

Martalo' G.;
2025-01-01

Abstract

In this paper, a class of reaction-diffusion equations for Multiple Sclerosis is presented. These models are derived by means of a diffusive limit starting from a proper kinetic description, taking account of the underlying microscopic interactions among cells. At the macroscopic level, we discuss the necessary conditions for Turing instability phenomena and the formation of two-dimensional patterns, whose shape and stability are investigated by means of a weakly nonlinear analysis. Some numerical simulations, confirming and extending theoretical results, are proposed for a specific scenario.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1536375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact