Industrial plants are vulnerable to different natural hazards, which can cause significant damage, economic losses, and loss of functionality, generating what is called a Natural Hazard Triggering Technological Disaster (Na-Tech event). Considering the different possible hazard sources, earthquakes can subject industrial plants to demanding scenarios, making it important to better understand and characterize their seismic response. Among the different components of industrial plants, piping systems represent a key element as they transport liquids and gases among different equipment and reservoirs. Any induced damage to piping systems can lead to leakage and loss of containment of hazardous substances, causing floods, fires, and explosions, starting a cascade effect along the industrial plant. This study evaluates the seismic response of diverse configurations of industrial steel piping systems through experimental tests. Twelve piping specimens composed of different geometrical layouts (i.e., straight, Omega, and V loops) and joint mechanisms (i.e., welded and flanged joints) were subjected to cyclic axial loads and seismic inputs, measuring displacements, deformations, forces, and acceleration in key points. The results show that some configurations, especially those with flanged connections, can exhibit larger seismic demands in terms of local deformations and acceleration response.

Experimental Characterization of the Seismic Response of Industrial Steel Piping Systems

Chalarca Echeverri B.
;
Gabbianelli G.;
2025-01-01

Abstract

Industrial plants are vulnerable to different natural hazards, which can cause significant damage, economic losses, and loss of functionality, generating what is called a Natural Hazard Triggering Technological Disaster (Na-Tech event). Considering the different possible hazard sources, earthquakes can subject industrial plants to demanding scenarios, making it important to better understand and characterize their seismic response. Among the different components of industrial plants, piping systems represent a key element as they transport liquids and gases among different equipment and reservoirs. Any induced damage to piping systems can lead to leakage and loss of containment of hazardous substances, causing floods, fires, and explosions, starting a cascade effect along the industrial plant. This study evaluates the seismic response of diverse configurations of industrial steel piping systems through experimental tests. Twelve piping specimens composed of different geometrical layouts (i.e., straight, Omega, and V loops) and joint mechanisms (i.e., welded and flanged joints) were subjected to cyclic axial loads and seismic inputs, measuring displacements, deformations, forces, and acceleration in key points. The results show that some configurations, especially those with flanged connections, can exhibit larger seismic demands in terms of local deformations and acceleration response.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1538215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact