We calculate the conductance through a single quantum dot coupled to metallic leads, modeled by the spin 1/2 Anderson model. We adopt the finite-U extension of the noncrossing approximation method. Our results are in good agreement with exact numerical renormalization group results both in the high temperature and in the Kondo (low temperature) regime. Thanks to this approach, we were able to fit fairly well recently reported measurements. in a quantum dot device. We show that, contrarily to what previously suggested, the conductance of this particular device can be understood within the spin 1/2 Anderson model, in which the effects of the multilevel structure of the dot are neglected.
Kondo effect in the transport through a quantum dot: extended noncrossing approximation approach
GERACE, DARIO;ANDREANI, LUCIO
2003-01-01
Abstract
We calculate the conductance through a single quantum dot coupled to metallic leads, modeled by the spin 1/2 Anderson model. We adopt the finite-U extension of the noncrossing approximation method. Our results are in good agreement with exact numerical renormalization group results both in the high temperature and in the Kondo (low temperature) regime. Thanks to this approach, we were able to fit fairly well recently reported measurements. in a quantum dot device. We show that, contrarily to what previously suggested, the conductance of this particular device can be understood within the spin 1/2 Anderson model, in which the effects of the multilevel structure of the dot are neglected.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.