In this work, a parallel three-dimensional solver for numerical simulations in com- putational electrocardiology is introduced and studied. The solver is based on the anisotropic Bidomain cardiac model, consisting of a system of two degenerate parabolic reaction–diffusion equations describing the intra and extracellular potentials of the myocardial tissue. This model includes intramural fiber rotation and anisotropic con- ductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. The solver also includes the simpler anisotropic Monodomain model, consisting of only one reaction–diffusion equation. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations that can vary from the simple FitzHugh–Nagumo (FHN) model to the more complex phase-I Luo–Rudy model (LR1). The solver employs structured isoparametric Q1 finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library. Large-scale computations with up to O(107 ) unknowns have been run on parallel computers, simulating excitation and repolarization phenomena in three-dimensional domains.
A parallel solver for reaction-diffusion systems in computational electrocardiology
COLLI FRANZONE, PIERO;PAVARINO, LUCA FRANCO
2004-01-01
Abstract
In this work, a parallel three-dimensional solver for numerical simulations in com- putational electrocardiology is introduced and studied. The solver is based on the anisotropic Bidomain cardiac model, consisting of a system of two degenerate parabolic reaction–diffusion equations describing the intra and extracellular potentials of the myocardial tissue. This model includes intramural fiber rotation and anisotropic con- ductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. The solver also includes the simpler anisotropic Monodomain model, consisting of only one reaction–diffusion equation. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations that can vary from the simple FitzHugh–Nagumo (FHN) model to the more complex phase-I Luo–Rudy model (LR1). The solver employs structured isoparametric Q1 finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library. Large-scale computations with up to O(107 ) unknowns have been run on parallel computers, simulating excitation and repolarization phenomena in three-dimensional domains.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.