Non-negative solutions to quasi-linear, degenerate or singular parabolic partial differential equations, of p-Laplacian type for p > 2N/(N+1) satisfy Harnack-type estimates in some intrinsic geometry. Some equivalent alternative forms of these Harnack estimates are established, where the supremum and the infimum of the solutions play symmetric roles, within a properly redefined intrinsic geometry. Such equivalent forms hold for the non-degenerate case p=2 following the classical work of Moser, and are shown to hold in the intrinsic geometry of these degenerate and/or parabolic p.d.e.’s. Some new forms of such an estimate are also established for 1 < p < 2.

Alternative Forms of the Harnack Inequality for Non-Negative Solutions to Certain Degenerate and Singular Parabolic Equations

GIANAZZA, UGO PIETRO;
2009-01-01

Abstract

Non-negative solutions to quasi-linear, degenerate or singular parabolic partial differential equations, of p-Laplacian type for p > 2N/(N+1) satisfy Harnack-type estimates in some intrinsic geometry. Some equivalent alternative forms of these Harnack estimates are established, where the supremum and the infimum of the solutions play symmetric roles, within a properly redefined intrinsic geometry. Such equivalent forms hold for the non-degenerate case p=2 following the classical work of Moser, and are shown to hold in the intrinsic geometry of these degenerate and/or parabolic p.d.e.’s. Some new forms of such an estimate are also established for 1 < p < 2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/200776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact