This article proposes thermogravimetric analysis (TGA) as a useful method to investigate the hydration behaviour of hydrophilic matrix tablets containing hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC) or a mixture of these two polymers and four drugs with different solubility. The hydration behaviour of matrix systems was studied as a function of the formulation composition and of the dissolution medium pH. TGA results suggest that the hydration of matrices containing HPMC is pH-independent and not affected by the characteristics of the loaded drug; this confirms HPMC as a good polymer to formulate controlled drug delivery systems. On the other hand, the performances of NaCMC matrix tablets are significantly affected by the medium pH and the hydration and swelling of this ionic polymer is influenced by the loaded drug. For systems containing the two polymers, HPMC plays a dominant role in the hydration/dissolution process at acidic pH, while at near neutral pH both the cellulose derivatives exert a significant influence on the hydration performance of systems. The results of this work show that TGA is able to give quantitative highlights on the hydration behaviour of polymeric materials; thus this technique could be a helpful tool to support conventional hydration/swelling/dissolution studies.

Thermogravimetric investigation of the hydration behaviour of hydrophilic matrices

SEGALE, LORENA;CONTI, STEFANIA;MAGGI, LAURETTA;
2010-01-01

Abstract

This article proposes thermogravimetric analysis (TGA) as a useful method to investigate the hydration behaviour of hydrophilic matrix tablets containing hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC) or a mixture of these two polymers and four drugs with different solubility. The hydration behaviour of matrix systems was studied as a function of the formulation composition and of the dissolution medium pH. TGA results suggest that the hydration of matrices containing HPMC is pH-independent and not affected by the characteristics of the loaded drug; this confirms HPMC as a good polymer to formulate controlled drug delivery systems. On the other hand, the performances of NaCMC matrix tablets are significantly affected by the medium pH and the hydration and swelling of this ionic polymer is influenced by the loaded drug. For systems containing the two polymers, HPMC plays a dominant role in the hydration/dissolution process at acidic pH, while at near neutral pH both the cellulose derivatives exert a significant influence on the hydration performance of systems. The results of this work show that TGA is able to give quantitative highlights on the hydration behaviour of polymeric materials; thus this technique could be a helpful tool to support conventional hydration/swelling/dissolution studies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/202356
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact