Phosphatidylinositol 3-kinase (PI3K) isoforms PI3Kbeta and PI3Kgamma are implicated in platelet adhesion, activation, and aggregation, but their relative contribution is still unclear or controversial. Here, we report the first comparative functional analysis of platelets from mice expressing a catalytically inactive form of PI3Kbeta or PI3Kgamma. We demonstrate that both isoforms were similarly required for maximal activation of the small GTPase Rap1b and for complete platelet aggregation upon stimulation of G protein-coupled receptors for adenosine 5'-diphosphate (ADP) or U46619. Their contribution to these events, however, was largely redundant and dispensable. However, PI3Kbeta, but not PI3Kgamma, enzymatic activity was absolutely required for Akt phosphorylation, Rap1 activation, and platelet aggregation downstream of the immunoreceptor tyrosine-based activation motif (ITAM)-bearing receptor glycoprotein VI (GPVI). Moreover, PI3Kbeta was a major essential regulator of platelet adhesion to fibrinogen and of integrin alpha(IIb)beta(3)-mediated spreading. These results provide genetic evidence for a crucial and selective role of PI3Kbeta in signaling through GPVI and integrin alpha(IIb)beta(3).

Genetic evidence for a predominant role of PI3Kbeta catalytic activity in ITAM- and integrin-mediated signaling in platelets.

CANOBBIO, ILARIA;TORTI, MAURO
2009-01-01

Abstract

Phosphatidylinositol 3-kinase (PI3K) isoforms PI3Kbeta and PI3Kgamma are implicated in platelet adhesion, activation, and aggregation, but their relative contribution is still unclear or controversial. Here, we report the first comparative functional analysis of platelets from mice expressing a catalytically inactive form of PI3Kbeta or PI3Kgamma. We demonstrate that both isoforms were similarly required for maximal activation of the small GTPase Rap1b and for complete platelet aggregation upon stimulation of G protein-coupled receptors for adenosine 5'-diphosphate (ADP) or U46619. Their contribution to these events, however, was largely redundant and dispensable. However, PI3Kbeta, but not PI3Kgamma, enzymatic activity was absolutely required for Akt phosphorylation, Rap1 activation, and platelet aggregation downstream of the immunoreceptor tyrosine-based activation motif (ITAM)-bearing receptor glycoprotein VI (GPVI). Moreover, PI3Kbeta was a major essential regulator of platelet adhesion to fibrinogen and of integrin alpha(IIb)beta(3)-mediated spreading. These results provide genetic evidence for a crucial and selective role of PI3Kbeta in signaling through GPVI and integrin alpha(IIb)beta(3).
2009
Biochemistry & Biophysics focuses on the structure and chemistry of biomolecules and covers all aspects of basic biochemistry/biophysics, including molecular structure, enzyme kinetics and protein-protein interaction; this category also contains cross-disciplinary resources focused on a specific class of biological molecules, e.g., nucleic acids, steroids, magnesium, growth factors, free radicals, bio-membranes, and peptides. Excluded are resources dealing with the application of biochemical techniques to specific topics listed elsewhere in CC/LS. Resources with a strong emphasis on the integration of biochemical pathways (such as signal transduction or molecular motors) at the cellular level are placed in the Cell & Developmental Biology category.
Sì, ma tipo non specificato
Inglese
Internazionale
STAMPA
114
10
2193
2196
4
platelets; PI-3K; integrin; signal transduction
8
info:eu-repo/semantics/article
262
Canobbio, Ilaria; Stefanini, Lucia; Cipolla, Lina; Ciraolo, Elisa; Gruppi, Cristian; Balduini, Cesare; Hirsch, Emilio; Torti, Mauro
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/202609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 118
social impact