Silicon-rich SiGe alloys represent a promising platform for the development of large-area single-mode optical waveguides to be integrated in silicon-based optical circuits. We find that SiGe layers epitaxially grown on Si successfully guide radiation with a 1.55 lm wavelength, but, beyond a critical core thickness, their optical properties are strongly affected by the clustering of misfit dislocations at the interface between Si and SiGe, leading to a significant perturbation of the local refractive index. Transmission electron microscopy and micro-Raman spectroscopy, together with finite-element simulations, provide a complete analysis of the impact of dislocations on optical propagation
Impact of misfit dislocations on wavefront distortion in Si/SiGe/Sioptical waveguides
TRITA, ANDREA;BRAGHERI, FRANCESCA;CRISTIANI, ILARIA;DEGIORGIO, VITTORIO;
2009-01-01
Abstract
Silicon-rich SiGe alloys represent a promising platform for the development of large-area single-mode optical waveguides to be integrated in silicon-based optical circuits. We find that SiGe layers epitaxially grown on Si successfully guide radiation with a 1.55 lm wavelength, but, beyond a critical core thickness, their optical properties are strongly affected by the clustering of misfit dislocations at the interface between Si and SiGe, leading to a significant perturbation of the local refractive index. Transmission electron microscopy and micro-Raman spectroscopy, together with finite-element simulations, provide a complete analysis of the impact of dislocations on optical propagationI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.