We present a framework to treat quantum networks and all possible transformations thereof, including as special cases all possible manipulations of quantum states, measurements, and channels, such as, e.g., cloning, discrimination, estimation, and tomography. Our framework is based on the concepts of quantum comb (which describes all transformations achievable by a given quantum network) and link product (the operation of connecting two quantum networks). Quantum networks are treated both from a constructive point of view-based on connections of elementary circuits-and from an axiomatic one-based on a hierarchy of admissible quantum maps. In the axiomatic context a fundamental property is shown, which we call universality of quantum memory channels: any admissible transformation of quantum networks can be realized by a suitable sequence of memory channels. The open problem whether this property fails for some nonquantum theory, e.g., for no-signaling boxes, is posed.
Theoretical framework for quantum networks
CHIRIBELLA, GIULIO;D'ARIANO, GIACOMO;PERINOTTI, PAOLO
2009-01-01
Abstract
We present a framework to treat quantum networks and all possible transformations thereof, including as special cases all possible manipulations of quantum states, measurements, and channels, such as, e.g., cloning, discrimination, estimation, and tomography. Our framework is based on the concepts of quantum comb (which describes all transformations achievable by a given quantum network) and link product (the operation of connecting two quantum networks). Quantum networks are treated both from a constructive point of view-based on connections of elementary circuits-and from an axiomatic one-based on a hierarchy of admissible quantum maps. In the axiomatic context a fundamental property is shown, which we call universality of quantum memory channels: any admissible transformation of quantum networks can be realized by a suitable sequence of memory channels. The open problem whether this property fails for some nonquantum theory, e.g., for no-signaling boxes, is posed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.