X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction are combined to study the interplay between electronic and lattice structures in controlling the superconductivity in cuprates with a model charge-compensated CaxLa1- xBa1.75-xLa0.25+xCu3Oy (0≤x<0.5, y7.13) system. In spite of a large change in Tc, the doped holes, determined by the Cu L and O K XAS, hardly show any variation with the x. On the other hand, the CuO2 plaquette size shows a systematic change due to different size of substituted cations. The results provide a direct evidence for the chemical pressure being a key parameter for controlling the superconducting ground state of the cuprates

Experimental evidence of chemical-pressure-controlled superconductivity in cuprates

SANNA, SAMUELE;
2009-01-01

Abstract

X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction are combined to study the interplay between electronic and lattice structures in controlling the superconductivity in cuprates with a model charge-compensated CaxLa1- xBa1.75-xLa0.25+xCu3Oy (0≤x<0.5, y7.13) system. In spite of a large change in Tc, the doped holes, determined by the Cu L and O K XAS, hardly show any variation with the x. On the other hand, the CuO2 plaquette size shows a systematic change due to different size of substituted cations. The results provide a direct evidence for the chemical pressure being a key parameter for controlling the superconducting ground state of the cuprates
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/207227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact