Background: Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer’s Disease (AD) that led to an impaired and dysfunctional response to stressors. Methodology/Principal Findings: Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that betaamyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1a and metallothionein 2A. Conclusions/Significance: These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.

Homeodomain interacting protein kinase 2: a target for Alzheimer's beta amyloid leading to misfolded p53 and inappropriate cell survival.

LANNI, CRISTINA;STANGA, SERENA;GOVONI, STEFANO;RACCHI, MARCO
2010-01-01

Abstract

Background: Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer’s Disease (AD) that led to an impaired and dysfunctional response to stressors. Methodology/Principal Findings: Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that betaamyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1a and metallothionein 2A. Conclusions/Significance: These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.
2010
Molecular Biology & Genetics considers all aspects of basic and applied genetics, including molecular genetics, prokaryotic and eukaryotic gene expression, mechanisms of mutagenesis, structure, function and regulation of genetic material. Also included are resources concerned with clinical genetics, patterns of inheritance, genetic cause, and screening and treatment of disease. Resources dealing specifically with developmentally regulated gene expression, or with signal transduction pathways that modulate gene expression at the cellular level are excluded and are covered in the Cell and Developmental Biology category.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
5
4
e10171
Alzheimer’s disease; beta-amyloid peptides; p53 conformation; HIPK2; chromatin immunoprecipitation; zinc supplementation
9
info:eu-repo/semantics/article
262
Lanni, Cristina; Nardinocchi, L; Puca, R; Stanga, Serena; Uberti, D; Memo, M; Govoni, Stefano; D'Orazi, G; Racchi, Marco
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/210161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact