Novel systems based on suspensions of colloidal magnetic nanoparticles have been investigated as perspective superparamagnetic contrast agents (CA) for magnetic resonance imaging (MRI). The nanostructures that we have studied contain surfactant-capped magnetite (Fe3O4) inorganic cores with different controlled sizes, ranging from 5.5 to 12 nm. The as-synthesized nanostructures are passivated by hydrophobic surfactants and thus are fully dispersible in nonpolar media. The magnetic nanocrystals have been transferred into aqueous media by a procedure based on the surface intercalation and coating with an amphiphilic polymer shell. The MRI efficiency in contrasting images, i.e., the NMR relaxivities r1 and r2, have been compared with Endorem and Sinerem, commercial superparamagneticMRI contrast agents. We found that our nanostructures exhibit r1 and r2 relaxivities comparable to those of commercial CA over the whole frequency range. The MRI efficiency of our samples was related to their microstructural and magnetic properties. The transverse relaxivity r2, leading the contrast in “negative” superparamagnetic agents, was found to improve as the diameter of the inorganic core is increased. The NMR relaxometry profile confirmed the nature of the physical mechanisms inducing the increase of the nuclear relaxation rates at low (magnetic anisotropy) and high (Curie relaxation) fields.

Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids

LASCIALFARI, ALESSANDRO;CORTI, MAURIZIO ENRICO;
2010-01-01

Abstract

Novel systems based on suspensions of colloidal magnetic nanoparticles have been investigated as perspective superparamagnetic contrast agents (CA) for magnetic resonance imaging (MRI). The nanostructures that we have studied contain surfactant-capped magnetite (Fe3O4) inorganic cores with different controlled sizes, ranging from 5.5 to 12 nm. The as-synthesized nanostructures are passivated by hydrophobic surfactants and thus are fully dispersible in nonpolar media. The magnetic nanocrystals have been transferred into aqueous media by a procedure based on the surface intercalation and coating with an amphiphilic polymer shell. The MRI efficiency in contrasting images, i.e., the NMR relaxivities r1 and r2, have been compared with Endorem and Sinerem, commercial superparamagneticMRI contrast agents. We found that our nanostructures exhibit r1 and r2 relaxivities comparable to those of commercial CA over the whole frequency range. The MRI efficiency of our samples was related to their microstructural and magnetic properties. The transverse relaxivity r2, leading the contrast in “negative” superparamagnetic agents, was found to improve as the diameter of the inorganic core is increased. The NMR relaxometry profile confirmed the nature of the physical mechanisms inducing the increase of the nuclear relaxation rates at low (magnetic anisotropy) and high (Curie relaxation) fields.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/210435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact