We show that any element of the universal Teichm\"uller space is realized by a unique minimal Lagrangian diffeomorphism from the hyperbolic plane to itself. The proof uses maximal surfaces in the 3-dimensional anti-de Sitter space. We show that, in $AdS^{n+1}$, any subset $E$ of the boundary at infinity which is the boundary at infinity of a space-like hypersurface bounds a maximal space-like hypersurface. In $AdS^3$, if $E$ is the graph of a quasi-symmetric homeomorphism, then this maximal surface is unique, and it has negative sectional curvature. As a by-product, we find a simple characterization of quasi-symmetric homeomorphisms of the circle in terms of 3-dimensional projective geometry.
Maximal surfaces and the universal Teichmueller space
BONSANTE, FRANCESCO;
2010-01-01
Abstract
We show that any element of the universal Teichm\"uller space is realized by a unique minimal Lagrangian diffeomorphism from the hyperbolic plane to itself. The proof uses maximal surfaces in the 3-dimensional anti-de Sitter space. We show that, in $AdS^{n+1}$, any subset $E$ of the boundary at infinity which is the boundary at infinity of a space-like hypersurface bounds a maximal space-like hypersurface. In $AdS^3$, if $E$ is the graph of a quasi-symmetric homeomorphism, then this maximal surface is unique, and it has negative sectional curvature. As a by-product, we find a simple characterization of quasi-symmetric homeomorphisms of the circle in terms of 3-dimensional projective geometry.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.