The arrow-of-time dilemma states that the laws of physics are invariant for time inversion, whereas the familiar phenomena we see everyday are not (i.e., entropy increases). I show that, within a quantum mechanical framework, all phenomena which leave a trail of information behind (and hence can be studied by physics) are those where entropy necessarily increases or remains constant. All phenomena where the entropy decreases must not leave any information of their having happened. This situation is completely indistinguishable from their not having happened at all. In the light of this observation, the second law of thermodynamics is reduced to a mere tautology: physics cannot study those processes where entropy has decreased, even if they were commonplace.

A quantum solution to the arrow-of-time dilemma

MACCONE, LORENZO
2009-01-01

Abstract

The arrow-of-time dilemma states that the laws of physics are invariant for time inversion, whereas the familiar phenomena we see everyday are not (i.e., entropy increases). I show that, within a quantum mechanical framework, all phenomena which leave a trail of information behind (and hence can be studied by physics) are those where entropy necessarily increases or remains constant. All phenomena where the entropy decreases must not leave any information of their having happened. This situation is completely indistinguishable from their not having happened at all. In the light of this observation, the second law of thermodynamics is reduced to a mere tautology: physics cannot study those processes where entropy has decreased, even if they were commonplace.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/220408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 50
social impact