Quantum estimation of the operators of a system is investigated by analyzing its Liouville space of operators. In this way it is possible to easily derive some general characterizations for the sets of observables (i.e., the possible quorums) that are measured for the quantum estimation. In particular we analyze the reconstruction of operators of spin systems.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Orthogonality relations in Quantum Tomography | |
Autori: | ||
Data di pubblicazione: | 2000 | |
Rivista: | ||
Abstract: | Quantum estimation of the operators of a system is investigated by analyzing its Liouville space of operators. In this way it is possible to easily derive some general characterizations for the sets of observables (i.e., the possible quorums) that are measured for the quantum estimation. In particular we analyze the reconstruction of operators of spin systems. | |
Handle: | http://hdl.handle.net/11571/223410 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.