In this paper a new intrinsic geometric characterization of the symmetric square of a curve and of the ordinary product of two curves is given. More precisely it is shown that the existence on a surface of general type S of irregularity q of an effective divisor D having self-intersection D^2>0 and arithmetic genus q implies that S is either birational to a product of curves or to the second symmetric product of a curve.
A characterization of the symmetric square of a curve
PIROLA, GIAN PIETRO
2012-01-01
Abstract
In this paper a new intrinsic geometric characterization of the symmetric square of a curve and of the ordinary product of two curves is given. More precisely it is shown that the existence on a surface of general type S of irregularity q of an effective divisor D having self-intersection D^2>0 and arithmetic genus q implies that S is either birational to a product of curves or to the second symmetric product of a curve.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.