In the nonconvex case solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential which is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of ‘BV solutions’ involves, in a nontrivial way, both the rate- independent and the viscous dissipation potential, which play a crucial role in the description of the associated jump trajectories. We shall prove a general convergence result for the time-continuous and for the time- discretized viscous approximations and establish various properties of the limiting BV solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.
BV solutions and viscosity approximations of rate-independent systems
SAVARE', GIUSEPPE
2012-01-01
Abstract
In the nonconvex case solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential which is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of ‘BV solutions’ involves, in a nontrivial way, both the rate- independent and the viscous dissipation potential, which play a crucial role in the description of the associated jump trajectories. We shall prove a general convergence result for the time-continuous and for the time- discretized viscous approximations and establish various properties of the limiting BV solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.