Silica nanoparticles (NPs) incorporating cadmium (Cd) have been developed for a range of potential application including drug delivery devices. Occupational Cd inhalation has been associated with emphysema, pulmonary fibrosis and lung tumours. Mechanistically, Cd can induce oxidative stress and mediate cell-signalling pathways that are involved in inflammation.This in vivo study aimed at investigating pulmonary molecular effects of NPs doped with Cd (NP-Cd, 1 mg/animal) compared to soluble CdCl2 (400 mg/animal), in Sprague Dawley rats treated intra-tracheally, 7 and 30 days after administration. NPs of silica containing Cd salt were prepared starting from commercial nano-size silica powder (HiSilTM T700 Degussa) with average pore size of 20 nm and surface area of 240 m2/g. Toxicogenomic analysis was performed by the DNA microarray technology (using Agilent Whole Rat Genome Microarray 4x44K) to evaluate changes in gene expression of the entire genome. These findings indicate that the whole genome analysis may represent a valuable approach to assess the whole spectrum of biological responses to cadmium containing nanomaterials.
Gene expression analysis in rat lungs after intratracheal exposure to nanoparticles doped with cadmium.
RODA, ELISA;MANZO, LUIGI;
2011-01-01
Abstract
Silica nanoparticles (NPs) incorporating cadmium (Cd) have been developed for a range of potential application including drug delivery devices. Occupational Cd inhalation has been associated with emphysema, pulmonary fibrosis and lung tumours. Mechanistically, Cd can induce oxidative stress and mediate cell-signalling pathways that are involved in inflammation.This in vivo study aimed at investigating pulmonary molecular effects of NPs doped with Cd (NP-Cd, 1 mg/animal) compared to soluble CdCl2 (400 mg/animal), in Sprague Dawley rats treated intra-tracheally, 7 and 30 days after administration. NPs of silica containing Cd salt were prepared starting from commercial nano-size silica powder (HiSilTM T700 Degussa) with average pore size of 20 nm and surface area of 240 m2/g. Toxicogenomic analysis was performed by the DNA microarray technology (using Agilent Whole Rat Genome Microarray 4x44K) to evaluate changes in gene expression of the entire genome. These findings indicate that the whole genome analysis may represent a valuable approach to assess the whole spectrum of biological responses to cadmium containing nanomaterials.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.