We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces. When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.

Hilbert schemes and stable pairs: GIT and derived category wall crossings

STOPPA, JACOPO;
2011-01-01

Abstract

We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces. When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/227068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 25
social impact