In this paper, we study several existing notions of well-posedness for vector optimization problems. We separate them into two classes and we establish the hierarchical structure of their relationships. Moreover, we relate vector well-posedness and well-posedness of an appropriate scalarization. This approach allows us to show that, under some compactness assumption, quasiconvex problems are well posed.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Well-posedness and scalarization in vector optimization | |
Autori: | ||
Data di pubblicazione: | 2005 | |
Rivista: | ||
Abstract: | In this paper, we study several existing notions of well-posedness for vector optimization problems. We separate them into two classes and we establish the hierarchical structure of their relationships. Moreover, we relate vector well-posedness and well-posedness of an appropriate scalarization. This approach allows us to show that, under some compactness assumption, quasiconvex problems are well posed. | |
Handle: | http://hdl.handle.net/11571/23374 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.