Nonlinearities in the time-to-digital converter (TDC) are a significant source of fractional spurs in a divider-less fractional-N ADPLL. Using an abstract model for the TDC, this paper presents a dithering method which is mathematically shown to suppress fractional tones, in conjunction with a feedforward dither cancellation technique which suppresses dither-induced phase noise. A mostly-digital calibration algorithm is also presented which ensures consistent phase noise cancellation across PVT conditions. The aforementioned techniques are implemented in a 65 nm digital CMOS prototype running at 3.5 GHz from a 35 MHz reference. The ADPLL demonstrates - 101 dBc/Hz in-band phase noise at a bandwidth of 3.4 MHz, - 58 dBc worst fractional spurious performance across the entire fractional range, and consumes 8.7 mW from a 1.2 V supply
A 3.5 GHz Wideband ADPLL With Fractional Spur Suppression Through TDC Dithering and Feedforward Compensation
CUSMAI, MARCO;SVELTO, FRANCESCO
2010-01-01
Abstract
Nonlinearities in the time-to-digital converter (TDC) are a significant source of fractional spurs in a divider-less fractional-N ADPLL. Using an abstract model for the TDC, this paper presents a dithering method which is mathematically shown to suppress fractional tones, in conjunction with a feedforward dither cancellation technique which suppresses dither-induced phase noise. A mostly-digital calibration algorithm is also presented which ensures consistent phase noise cancellation across PVT conditions. The aforementioned techniques are implemented in a 65 nm digital CMOS prototype running at 3.5 GHz from a 35 MHz reference. The ADPLL demonstrates - 101 dBc/Hz in-band phase noise at a bandwidth of 3.4 MHz, - 58 dBc worst fractional spurious performance across the entire fractional range, and consumes 8.7 mW from a 1.2 V supplyI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.