It is well known that physiological functions and pathological conditions of cells and tissues can be influenced not only by chemical molecules, but also by physical stimuli such as electromagnetic waves. In particular, epidemiological studies suggest possible associations between exposure to electromagnetic fields and an increased risk of tumors and neurodegenerative disorders, such as Alzheimer's disease. However, depending on the dose and on the length of treatment, the electromagnetic stimuli can be harmful or induce a cytoprotective cellular response, suggesting a possible application in medical therapy. In this study, under a tissue engineering viewpoint, we investigated the effects of an electromagnetic wave (magnetic field intensity, 2 mT; frequency, 75 Hz) on a neuronal cellular model characterized by the overexpression of the amyloid precursor protein (APP). After a prolonged electromagnetic treatment, lower mitochondrial activity and proliferation rate, resulting in a higher cellular quiescence, were observed. Focusing on the stress and oxidative pathways, we detected an overall increase of two fundamental proteins, the chaperone heat shock protein HSP70 and the free radical scavenger superoxide dismutase-1 enzyme (SOD-1). Interestingly, we found that the electromagnetic stimulation promotes the nonamyloidogenic processing of APP through an increased expression of the α-secretase ADAM10 and an enhanced release of the soluble neurotrophic factor sAPPα (a product of the ADAM10-mediated cleavage of APP). In conclusion, these findings suggest that the electromagnetic stimulus, if properly administered in terms of dose and timing, is able to induce a cytoprotective response in the cell. Moreover, these results suggest a possible use of this particular physical stimulation to improve the functional capability of the cells to face noxae.

Cytoprotective response induced by electromagnetic stimulation on SH-SY5Y human neuroblastoma cell line

Osera C;Fassina L;Amadio M;Venturini L;Buoso E;Magenes G;Govoni S;Ricevuti G;Pascale A.
2011-01-01

Abstract

It is well known that physiological functions and pathological conditions of cells and tissues can be influenced not only by chemical molecules, but also by physical stimuli such as electromagnetic waves. In particular, epidemiological studies suggest possible associations between exposure to electromagnetic fields and an increased risk of tumors and neurodegenerative disorders, such as Alzheimer's disease. However, depending on the dose and on the length of treatment, the electromagnetic stimuli can be harmful or induce a cytoprotective cellular response, suggesting a possible application in medical therapy. In this study, under a tissue engineering viewpoint, we investigated the effects of an electromagnetic wave (magnetic field intensity, 2 mT; frequency, 75 Hz) on a neuronal cellular model characterized by the overexpression of the amyloid precursor protein (APP). After a prolonged electromagnetic treatment, lower mitochondrial activity and proliferation rate, resulting in a higher cellular quiescence, were observed. Focusing on the stress and oxidative pathways, we detected an overall increase of two fundamental proteins, the chaperone heat shock protein HSP70 and the free radical scavenger superoxide dismutase-1 enzyme (SOD-1). Interestingly, we found that the electromagnetic stimulation promotes the nonamyloidogenic processing of APP through an increased expression of the α-secretase ADAM10 and an enhanced release of the soluble neurotrophic factor sAPPα (a product of the ADAM10-mediated cleavage of APP). In conclusion, these findings suggest that the electromagnetic stimulus, if properly administered in terms of dose and timing, is able to induce a cytoprotective response in the cell. Moreover, these results suggest a possible use of this particular physical stimulation to improve the functional capability of the cells to face noxae.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/243897
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact