Background: We have recently discovered that the two tryptophans of human beta 2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of beta 2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of beta 2-microglobulin with respect to these residues. Results: Having defined the beta 2-microglobulin protein family, we performed multiple sequence alignments and analysed the residue conservation in homologous proteins to generate a phylogenetic tree. Our results indicate that Trp60 is highly conserved, whereas some species have a Leu in position 95; the replacement of Trp95 with Leu destabilizes beta 2-microglobulin by 1 kcal/mol and accelerates the kinetics of unfolding. Both thermodynamic and kinetic data fit with the crystallographic structure of the Trp95Leu variant, which shows how the hydrophobic cavity of the wild-type protein is completely occupied by Trp95, but is only half filled by Leu95. Conclusions: We have established that the functional Trp60 has been present within the sequence of beta 2-microglobulin since the evolutionary appearance of proteins responsible for acquired immunity, whereas the structural Trp95 was selected and stabilized, most likely, for its capacity to fully occupy an internal cavity of the protein thereby creating a better stabilization of its folded state.

The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure.

RAIMONDI, SARA;BARBARINI, NICOLA;MANGIONE, PALMA;ZORZOLI, IRENE;MARCHESE, LOREDANA;SORIA, CRISTINA;BELLAZZI, RICCARDO;STOPPINI, MONICA;STEFANELLI, MARIO;MAGNI, PAOLO;BELLOTTI, VITTORIO
2011-01-01

Abstract

Background: We have recently discovered that the two tryptophans of human beta 2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of beta 2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of beta 2-microglobulin with respect to these residues. Results: Having defined the beta 2-microglobulin protein family, we performed multiple sequence alignments and analysed the residue conservation in homologous proteins to generate a phylogenetic tree. Our results indicate that Trp60 is highly conserved, whereas some species have a Leu in position 95; the replacement of Trp95 with Leu destabilizes beta 2-microglobulin by 1 kcal/mol and accelerates the kinetics of unfolding. Both thermodynamic and kinetic data fit with the crystallographic structure of the Trp95Leu variant, which shows how the hydrophobic cavity of the wild-type protein is completely occupied by Trp95, but is only half filled by Leu95. Conclusions: We have established that the functional Trp60 has been present within the sequence of beta 2-microglobulin since the evolutionary appearance of proteins responsible for acquired immunity, whereas the structural Trp95 was selected and stabilized, most likely, for its capacity to fully occupy an internal cavity of the protein thereby creating a better stabilization of its folded state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/257699
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact