We present an LES-type variational multiscale theory of turbulence. Our approach derives completely from the incompressible Navier–Stokes equations and does not employ any ad hoc devices, such as eddy viscosities. We tested the formulation on forced homogeneous isotropic turbulence and turbulent channel flows. In the calculations, we employed linear, quadratic and cubic NURBS. A dispersion analysis of simple model problems revealed NURBS elements to be superior to classical finite elements in approximating advective and diffusive processes, which play a significant role in turbulence computations. The numerical results are very good and confirm the viability of the theoretical framework.

Variational Multiscale Residual-based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows

REALI, ALESSANDRO;
2007-01-01

Abstract

We present an LES-type variational multiscale theory of turbulence. Our approach derives completely from the incompressible Navier–Stokes equations and does not employ any ad hoc devices, such as eddy viscosities. We tested the formulation on forced homogeneous isotropic turbulence and turbulent channel flows. In the calculations, we employed linear, quadratic and cubic NURBS. A dispersion analysis of simple model problems revealed NURBS elements to be superior to classical finite elements in approximating advective and diffusive processes, which play a significant role in turbulence computations. The numerical results are very good and confirm the viability of the theoretical framework.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/31602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact