Let (X,L) be a polarised manifold. We show that K-stability and as- ymptotic Chow stability of the blowup of X along a 0-dimensional cycle are closely related to Chow stability of the cycle itself, for polarisations making the exceptional divisors small. This can be used to give (almost) a converse to the results of Arezzo and Pacard (2004 and 2007) and to give new examples of K ̈ahler classes with no constant scalar curvature representatives.
Unstable Blowups / Stoppa Jacopo. - In: JOURNAL OF ALGEBRAIC GEOMETRY. - ISSN 1056-3911. - STAMPA. - 19:1(2010), pp. 1-17.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Unstable Blowups |
Autori: | |
Data di pubblicazione: | 2010 |
Rivista: | |
Citazione: | Unstable Blowups / Stoppa Jacopo. - In: JOURNAL OF ALGEBRAIC GEOMETRY. - ISSN 1056-3911. - STAMPA. - 19:1(2010), pp. 1-17. |
Abstract: | Let (X,L) be a polarised manifold. We show that K-stability and as- ymptotic Chow stability of the blowup of X along a 0-dimensional cycle are closely related to Chow stability of the cycle itself, for polarisations making the exceptional divisors small. This can be used to give (almost) a converse to the results of Arezzo and Pacard (2004 and 2007) and to give new examples of K ̈ahler classes with no constant scalar curvature representatives. |
Handle: | http://hdl.handle.net/11571/31639 |
Appare nelle tipologie: | 1.1 Articolo in rivista |