We present a novel variational approach to gradient-flow evolution in metric spaces. In particular, we advance a functional defined on entire trajectories, whose minimizers converge to curves of maximal slope for geodesically convex energies. The crucial step of the argument is the reformulation of the variational approach in terms of a dynamic programming principle, and the use of the corresponding Hamilton–Jacobi equation. The result is applicable to a large class of nonlinear evolution PDEs including nonlinear drift-diffusion, Fokker–Planck, and heat flows on metric-measure spaces.

A variational principle for gradient flows in metric spaces

SAVARE', GIUSEPPE;SEGATTI, ANTONIO GIOVANNI;
2011-01-01

Abstract

We present a novel variational approach to gradient-flow evolution in metric spaces. In particular, we advance a functional defined on entire trajectories, whose minimizers converge to curves of maximal slope for geodesically convex energies. The crucial step of the argument is the reformulation of the variational approach in terms of a dynamic programming principle, and the use of the corresponding Hamilton–Jacobi equation. The result is applicable to a large class of nonlinear evolution PDEs including nonlinear drift-diffusion, Fokker–Planck, and heat flows on metric-measure spaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/321705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact