We present a decoding procedure to transmit classical information in a quantum channel which, saturating asymptotically the Holevo bound, achieves the optimal rate of the communication line. In contrast to previous proposals, it is based on performing a sequence of projective yes-no measurements which in N steps determines which codeword was sent by the sender (N being the number of the codewords). Our analysis shows that, as long as N is below the limit imposed by the Holevo bound, the error probability can be sent to zero asymptotically in the length of the codewords

Achieving the Holevo bound via sequential measurements

MACCONE, LORENZO
2012-01-01

Abstract

We present a decoding procedure to transmit classical information in a quantum channel which, saturating asymptotically the Holevo bound, achieves the optimal rate of the communication line. In contrast to previous proposals, it is based on performing a sequence of projective yes-no measurements which in N steps determines which codeword was sent by the sender (N being the number of the codewords). Our analysis shows that, as long as N is below the limit imposed by the Holevo bound, the error probability can be sent to zero asymptotically in the length of the codewords
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/340925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact