We report the observation of TeV γ -rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) γ -ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro
Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment
GIROLETTI, ELIO;BOLOGNINO, IRENE;SALVINI, PAOLA;CATTANEO, CLAUDIO;LIGUORI, GIUSEPPE
2012-01-01
Abstract
We report the observation of TeV γ -rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) γ -ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by MilagroI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.