We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower bound in terms of the Blake and Zisserman energy. We prove a sharp bound by exhibiting the discrete-to-continuous $\Gamma$-limit for a special class of functions, showing the appearance of new ‘shear’ terms in the energy, which are a genuinely two-dimensional effect.

A compactness result for a second-order variational discrete model

VITALI, ENRICO
2012-01-01

Abstract

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower bound in terms of the Blake and Zisserman energy. We prove a sharp bound by exhibiting the discrete-to-continuous $\Gamma$-limit for a special class of functions, showing the appearance of new ‘shear’ terms in the energy, which are a genuinely two-dimensional effect.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/348926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact