In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0-1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.

Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals

MERLO, SABINA GIOVANNA;CARPIGNANO, FRANCESCA MARIA CARLA
2012-01-01

Abstract

In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0-1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/353526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 25
social impact