Recent observations of cetacean mass strandings, coincident with anthropogenic sounds emissions, have raised concerns on the potential environmental impact of underwater noise. Cuvier’s beaked whale (Ziphius cavirostris) was reported in all the cited stranding events. Within the NATO Marine Mammal Risk Mitigation project (MMRM), multiple interdisciplinary sea trials have been conducted in the Mediterranean Sea with the objective of developing tools and procedures to mitigate the impact of underwater sound emissions. During these cruises, visual observations, passive acoustic detections and environmental data were collected. The aim of this study was to evaluate ‘‘a priori’’ predictions of Cuvier’s beaked whale presence in the Alboran Sea, using models developed in the Ligurian Sea that employ bathymetric and chlorophyll features as predictors. The accuracy of these predictions was found adequate and elements are given to account for the uncertainties associated to the use of models developed in areas different from their calibration site.
Risk mapping for sensitive species to underwater anthropogenic sound emissions: model development and validation in two Mediterranean areas.
PAVAN, GIANNI;
2011-01-01
Abstract
Recent observations of cetacean mass strandings, coincident with anthropogenic sounds emissions, have raised concerns on the potential environmental impact of underwater noise. Cuvier’s beaked whale (Ziphius cavirostris) was reported in all the cited stranding events. Within the NATO Marine Mammal Risk Mitigation project (MMRM), multiple interdisciplinary sea trials have been conducted in the Mediterranean Sea with the objective of developing tools and procedures to mitigate the impact of underwater sound emissions. During these cruises, visual observations, passive acoustic detections and environmental data were collected. The aim of this study was to evaluate ‘‘a priori’’ predictions of Cuvier’s beaked whale presence in the Alboran Sea, using models developed in the Ligurian Sea that employ bathymetric and chlorophyll features as predictors. The accuracy of these predictions was found adequate and elements are given to account for the uncertainties associated to the use of models developed in areas different from their calibration site.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.