We propose an array of non-imaging micro-concentrators as a mean to recover the loss of sensitivity due to area fill-factor. This is particularly important for those image photo detectors in which complex circuit functions are required and a substantial fraction of the pixel area is consumed, like e.g., 3D camera, SPAD arrays, fluorescence analyzers, etc., but also in CMOS sensors. So far, the low fill-factor was an unacceptable loss of sensitivity precluding from the development of such devices, whereas by using a concentrator array a recovery is possible, up to the inverse square of numerical aperture of the objective lens. By ray tracing, we calculate the concentration factors of several geometries of non-imaging concentrator, i.e., truncated cone, parabolic and compound parabolic, both reflective and refractive. The feasibility of a sizeable recovery of fill-factor (up to 50) is demonstrated.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Microconcentrators to recover fill-factor in image photo-detectors with pixel on-board processing | |
Autori: | ||
Data di pubblicazione: | 2007 | |
Rivista: | ||
Abstract: | We propose an array of non-imaging micro-concentrators as a mean to recover the loss of sensitivity due to area fill-factor. This is particularly important for those image photo detectors in which complex circuit functions are required and a substantial fraction of the pixel area is consumed, like e.g., 3D camera, SPAD arrays, fluorescence analyzers, etc., but also in CMOS sensors. So far, the low fill-factor was an unacceptable loss of sensitivity precluding from the development of such devices, whereas by using a concentrator array a recovery is possible, up to the inverse square of numerical aperture of the objective lens. By ray tracing, we calculate the concentration factors of several geometries of non-imaging concentrator, i.e., truncated cone, parabolic and compound parabolic, both reflective and refractive. The feasibility of a sizeable recovery of fill-factor (up to 50) is demonstrated. | |
Handle: | http://hdl.handle.net/11571/35702 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |