Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of G(q/11). In the present study we show that the Ca(2+) current flowing through L-type voltage-gated Ca(2+) channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca(2+) channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.

L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells

TOSELLI, MAURO GIUSEPPE;
2005-01-01

Abstract

Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of G(q/11). In the present study we show that the Ca(2+) current flowing through L-type voltage-gated Ca(2+) channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca(2+) channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/359970
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact