Although the role of abnormal prion protein (PrP) conformation in generating infectious brain diseases (transmissible spongiform encephalopathy) has been recognized, the function of PrP in the normal brain remains mostly unknown. In this investigation, we considered the effect of PrP gene knock-out (PrP0/0) on cerebellar neural circuits and in particular on granule cells, which show intense PrP expression during development and selective affinity for PrP. At the third postnatal week,whenPrP expression would normally attain mature levels, PrP0/0 mice showed low performance in the accelerating rotarod and runway tests and the functioning of 40% of granule cells was abnormal. Spikes were slow, nonovershooting, and nonrepetitive in relation with a reduction in transient inward and outward membrane currents, and also the EPSPs and EPSCs had slow kinetics. Overall, these alterations closely resembled an immature phenotype. Moreover, in slow-spiking PrP0/0 granule cells, theta-burst stimulation was unable to induce any long-term potentiation. This profound impairment in synaptic excitation and plasticity was associated with a protracted proliferation of granule cells and disappeared at P40 –P50 along with the recovery of normal motor behavior (Bu¨eler et al., 1992). These results suggest that PrP plays an important role in granule cell development eventually regulating cerebellar network formation and motor control.

Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control.

PRESTORI, FRANCESCA;ROSSI, PAOLA;NECCHI, DANIELA;D'ANGELO, EGIDIO UGO
2008-01-01

Abstract

Although the role of abnormal prion protein (PrP) conformation in generating infectious brain diseases (transmissible spongiform encephalopathy) has been recognized, the function of PrP in the normal brain remains mostly unknown. In this investigation, we considered the effect of PrP gene knock-out (PrP0/0) on cerebellar neural circuits and in particular on granule cells, which show intense PrP expression during development and selective affinity for PrP. At the third postnatal week,whenPrP expression would normally attain mature levels, PrP0/0 mice showed low performance in the accelerating rotarod and runway tests and the functioning of 40% of granule cells was abnormal. Spikes were slow, nonovershooting, and nonrepetitive in relation with a reduction in transient inward and outward membrane currents, and also the EPSPs and EPSCs had slow kinetics. Overall, these alterations closely resembled an immature phenotype. Moreover, in slow-spiking PrP0/0 granule cells, theta-burst stimulation was unable to induce any long-term potentiation. This profound impairment in synaptic excitation and plasticity was associated with a protracted proliferation of granule cells and disappeared at P40 –P50 along with the recovery of normal motor behavior (Bu¨eler et al., 1992). These results suggest that PrP plays an important role in granule cell development eventually regulating cerebellar network formation and motor control.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/378012
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 61
social impact