Let $f\colon X\rightarrow B$ be a fibration of genus $g$ whose general fiber is a double cover of a smooth curve of genus $\gamma$. We show that $4(g-1)/(g-\gamma)$ is a sharp lower bound for the slope of $f$ when $g> 4\gamma+1$, proving a conjecture of Barja. Moreover, we give a characterization of the fibered surfaces that reach the bound. In the case $g=4\gamma+1 $ we obtain the same sharp bound under the additional assumption that the involutions on the general fibers glue to a global involution on $X$.

A sharp bound for the slope of double cover fibrations

CORNALBA, MAURIZIO DUILIO
Membro del Collaboration Group
;
Stoppino Lidia
Membro del Collaboration Group
2008-01-01

Abstract

Let $f\colon X\rightarrow B$ be a fibration of genus $g$ whose general fiber is a double cover of a smooth curve of genus $\gamma$. We show that $4(g-1)/(g-\gamma)$ is a sharp lower bound for the slope of $f$ when $g> 4\gamma+1$, proving a conjecture of Barja. Moreover, we give a characterization of the fibered surfaces that reach the bound. In the case $g=4\gamma+1 $ we obtain the same sharp bound under the additional assumption that the involutions on the general fibers glue to a global involution on $X$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/380889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact