The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Otztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to similar to 60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis.

New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing

SEMINO, ORNELLA;
2012-01-01

Abstract

The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Otztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to similar to 60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis.
2012
Molecular Biology & Genetics considers all aspects of basic and applied genetics, including molecular genetics, prokaryotic and eukaryotic gene expression, mechanisms of mutagenesis, structure, function and regulation of genetic material. Also included are resources concerned with clinical genetics, patterns of inheritance, genetic cause, and screening and treatment of disease. Resources dealing specifically with developmentally regulated gene expression, or with signal transduction pathways that modulate gene expression at the cellular level are excluded and are covered in the Cell and Developmental Biology category.
Esperti anonimi
Inglese
Internazionale
STAMPA
3
698
706
9
Whole-genome sequencing; Human Y chromosome; Phylogeography; Y-chromosome haplogroup G; Genetic history of human populations
http://www.nature.com/ncomms/journal/v3/n2/full/ncomms1701.html
41
info:eu-repo/semantics/article
262
Keller, A; Graefen, A; Ball, M; Matzas, M; Boisguerin, V; Maixner, F; Leidinger, P; Backes, C; Khairat, R; Forster, M; Stade, B; Franke, A; Mayer, J; ...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/389320
Citazioni
  • ???jsp.display-item.citation.pmc??? 165
  • Scopus 346
  • ???jsp.display-item.citation.isi??? 296
social impact