A large volume of research in temporal data mining is focusing on discovering temporal rules from time-stamped data. The majority of the methods proposed so far have been mainly devoted to the mining of temporal rules which describe relationships between data sequences or instantaneous events and do not consider the presence of complex temporal patterns into the dataset. Such complex patterns, such as trends or up and down behaviors, are often very interesting for the users. In this paper we propose a new kind of temporal association rule and the related extraction algorithm; the learned rules involve complex temporal patterns in both their antecedent and consequent. Within our proposed approach, the user defines a set of complex patterns of interest that constitute the basis for the construction of the temporal rule; such complex patterns are represented and retrieved in the data through the formalism of knowledge-based Temporal Abstractions. An Apriori-like algorithm looks then for meaningful temporal relationships (in particular, precedence temporal relationships) among the complex patterns of interest. The paper presents the results obtained by the rule extraction algorithm on a simulated dataset and on two different datasets related to biomedical applications: the first one concerns the analysis of time series coming from the monitoring of different clinical variables during hemodialysis sessions, while the other one deals with the biological problem of inferring relationships between genes from DNA microarray data.

Data mining with temporal abstractions: learning rules from time series

SACCHI, LUCIA;LARIZZA, CRISTIANA;BELLAZZI, RICCARDO
2007-01-01

Abstract

A large volume of research in temporal data mining is focusing on discovering temporal rules from time-stamped data. The majority of the methods proposed so far have been mainly devoted to the mining of temporal rules which describe relationships between data sequences or instantaneous events and do not consider the presence of complex temporal patterns into the dataset. Such complex patterns, such as trends or up and down behaviors, are often very interesting for the users. In this paper we propose a new kind of temporal association rule and the related extraction algorithm; the learned rules involve complex temporal patterns in both their antecedent and consequent. Within our proposed approach, the user defines a set of complex patterns of interest that constitute the basis for the construction of the temporal rule; such complex patterns are represented and retrieved in the data through the formalism of knowledge-based Temporal Abstractions. An Apriori-like algorithm looks then for meaningful temporal relationships (in particular, precedence temporal relationships) among the complex patterns of interest. The paper presents the results obtained by the rule extraction algorithm on a simulated dataset and on two different datasets related to biomedical applications: the first one concerns the analysis of time series coming from the monitoring of different clinical variables during hemodialysis sessions, while the other one deals with the biological problem of inferring relationships between genes from DNA microarray data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/393519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 101
social impact